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 ABSTRACT: A series of papers published by the authors presented theoretical studies to describe the behavior of inflated cushion 

structures deployed into arched shapes under active bending to span a particular distance. This type of bending active structures is 

composed of relatively small, modular inflatable cushions combined with cables and cross-braces. The structure is self-erecting. 

Introduction of tension to the cable gives it shape and load carrying capacity. It was demonstrated that this behavior was equivalent to the 

classical elastica problem. The authors extended this methodology to include the behavior of these structures under a mid-span point load. 

It was noted that the methodology was limited to deriving shapes that did not include inflection points, and that a modificat ion of the 

methodology would be required to derive shapes for forces of greater magnitude which would potentially include them. Such a 

modification was successfully made and the authors noted that the modified methodology used would have greater potential for future 

studies. In this paper, the authors presents a summary of the results achieved so far, and the resulting conclusions. 
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1. INTRODUCTION 

The physical system considered in this paper is a modular inflatable 

shell. Its structure consists of the three groups of elements: modular 

inflated cushions (relatively small), tension cables and cross-braces, as 

shown in Figure 1, top. The latter are optional and are used to increase 

the structural height. This can also be done by increasing the thickness 

of the cushions, in the whole structure or part thereof (variable rigidity 

of the structure). The structure may be shaped as an arc or a single or 

double curved shell. 

The flat structure is assembled at ground level as a near mechanism. It is 

stabilized and finally shaped in the self-erection process. The essence of 

the process is the introduction into the structure forces that cause its 

large deformation (uplift) and give the rigidity. The forces are 

introduced by pulling the bottom tension cable, thus reducing the 

distance between the supports. The system becomes bending-active. 

Figure 1, bottom, shows a general idea of this process.  

The structure is assumed to behave elastically, in that a bending 

stiffness EI is assumed constant. The authors realize that this is probably 

not the case; however, the purpose of the theoretical studies is to 

understand the non-linear behavior due to the bending-thrust interaction 

without further complication due to non-linear bending stiffness. 

This system has been presented previously (see Refs 1-4). The initial 

experiments confirmed its technological feasibility (Ref. 3). Currently, 

the authors, in a series of publications (see Refs 5-10, attempted to 

formulate a calculation model of this type of structures. This paper 

summarizes the state of the art in this regard, presenting various 

possible approaches and obtained results. 

2. FORMULATION OF THE CALCULATION MODEL

Formulation of the calculation model of bending-active inflated shell is 

a complex problem. The first attempt to computational modeling of 

modular inflated shell is based on a simplified physical model. The 

complex internal structure of the shell was approximated by an elastic 

rod (Ref. 5). 

Fig. 1 General composition of modular inflated shell (top) and process 

of self-erection (bottom) 

This allows figuring out the problem from an analytical view point, 

without being concerned about the details of the construction of the real 

structure. Issues of determining the flexural stiffness EI of the structure 

composed of inflated cushions were omitted. Similarly, were omitted 

issues of the interaction between the cushions-cross braces system and 

cable sliding through the nodes of the bottom chord. The adopted 

methodology has been presented in application to three selected 
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computational cases At the end of this paper, information about the 

ongoing work on formulating the model without the simplifications 

mentioned above are given. 

3. APPLICATION OF THE ADOPTED METHODOLOGY TO 

SELECTED COMPUTATIONAL CASES 

Developed methodology has been applied to formulate the calculation 

model for three cases. The first of these is the self-erection stage, in 

which the initial shape of the structure is determined before application 

of the payload. The only external load is the lifting force. The second 

case involves a structure loaded with concentrated force applied in the 

middle of the span. The amount of applied force is limited to the value 

at which there is no inflection point of deformed line of the substitute 

elastic rod. In the third case, the structure subjected to concentrated 

force applied in the middle of the span was analyzed, without limiting 

the occurrence of inflection points. 

3.1 Self-erection state 

The first stage of the analysis included only initial stage – self-erection 

of bending active structure. This is a problem of the initial form of the 

structure depending on its mechanical properties and the applied lifting 

force. No cases of the external load were considered at this stage. 

A substitute beam-like structure has a roller support A and a simple 

support B. The end at the roller support is attached to a cable, which is 

pulled horizontally through a hole drilled in the simple support, and, 

after the beam-like structure has deformed to a maximum height h, the 

pulling cable is clamped at the simple support end. 

A free body diagram of the system can be drawn, cutting out the cable, 

and assuming weight is not a significant force. It shows applied 

horizontal tension load T at the location of the roller support pointing 

toward the simple support, and the equal and opposite reaction RH load 

at the simple support. Vertical reactions at the two supports are 

neglected, as they have to be equal and opposite, but must be zero 

because there is no external agent capable of counteracting the resulting 

couple moment. The free body diagram is shown on  Figure 2. Two 

approaches have been applied to the task formulated in this way. The 

first one is based on the equation of equilibrium of the Euler column 

with large deflections, while the second one is based on the solution of 

the elastica problem. 

Fig. 2 A free body diagram of modular inflated shell considered as a 

substitute elastic beam 

3.1.1 Formulation based on equation of equilibrium of the Euler 

column with large deflections 

The free body diagram shown on Figure 2 is effectively the same as that 

of the Euler column. If we make a cut at some coordinate x along the 

length from the simple support B to the roller support B and take a free-

body diagram of one half of the body, the moment equilibrium equation 

is: 

( ) 0M x Ty+ =   (1) 

Here, M(x) is the internal moment, T is the tension in the cable, and y is 

the amount of deflection at position x. From this point on, further 

analysis will be carried out in two steps: first, assuming that the 

deflections are “small enough”, then for large deflections. 

Solution for small deflection 

Assuming a linearly elastic material, the equation (1) for the bending 

structure can be written as: 

0EI Ty + = (2) 

Here, according to Euler-Bernoulli law, κ is the curvature of the elastic 

curve of the structure: 
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If θ is introduced as the first derivative of y: /dy dx = , and is then 

assumed to be an explicit function of y, then: 
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When deflections are small, the denominator of the above expression 

approaches a value of 1 and κ is approximated by the second derivative 

of y. 

d d dy d

dx dy dx dy

  
 = = =  (5) 

Substituting equation (5) into equation (2) and separating variables 

yields: 

2

1d ydy  = − (6) 

Here, λ1 is defined as: 

1

T

EI
 = (7) 

It should be noted that from this point forward that λ1 does not have a 

strong relationship with T as implied by equation (7), but is used simply 

as a mechanism to derive a compatible shape. The value of T is 

determined through the following methodology. 

From the equations (2) and (5) it follows that for “small enough” 

deflections, moment M is related to the second derivative of y times EI. 

Given the form of the differential equation, the boundary conditions and 

the desired result for maximum deflection, a guess for the form of y is: 

( ) sin
x

y x h


= (8) 

Where, l is the current distance between the supports, and is considered 

an unknown in the problem. The beam-like structure has a net 

compression transmitted through it; however, at this stage we will 

ignore the deformation associated with this compression. Thus, for a 

given value of h, the variable l can be solved using the equation: 

2

0

1
dy

L dx
dx

 
= +  

 
  (9) 

Here, L is the length of the beam-like structure when undeformed. 

The strain energy of the beam-like structure is formulated by using 

equations (1) and (8), and on the base of the Clapeyron theorem can be 

shown to be: 

2 2

4

T h
U

EI
= (10) 

Applying the Castigliano theorem, one now takes the derivative of the 

strain energy with respect to T to yield the movement of the roller 
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support toward the simple support, which equals L – l. Solving for T 

yields: 

2

2
1

EI L
T

h

 
= − 

 
(11) 

Now we can return to equation (6) in order to analyze on this basis the 

elastic curve of the structure. Integrating equation (6) yields: 

2 2 2

1 1

1 1

2 2
y C = − + (12) 

Here, C1 is an arbitrary constant. Assuming symmetry of deformation 

and maximum deflection h, then θ = 0 when y = h. Using this boundary 

condition, solving for C1 and plugging back into equation (12) yields: 

( )2 2 2 2

1

1 1

2 2
h y = − (13) 

Manipulating equation (13), remembering the definition of θ, and 

separating variables yields: 

2 2

1

dy
dx

h y
=

−
 (14) 

Here, we incorporate the boundary condition that when x = 0 then y = 0. 

This can be done by taking definite integrals from 0 to y of the left side 

of equation (14) and from 0 to x on the right side of equation (14). 

It may be advantageous to non-dimensionalize at this point, defining η 

and ξ as: 

;
y x

h
 = =  (15) 

We then substitute into equation (14) and manipulate to obtain: 

21

d
d


 


=

−
 (16) 

Here, the non-dimensional parameter λ is λ1 multiplied by l. Integrating 

both sides and rearranging yields: 

sin =  (17) 

When ξ = ½, η = 1; thus, the simplest assignment for λ is π. Substituting 

for the non-dimensional variables as defined in equation (15) gives us 

the half-sine wave shape, which is then used to define the strain energy. 

Attempt at large deflection solution 

Dealing with large deflections is based on a similar approach. Here, the 

curvature is described by full expression given in equations (3) and (4).  

The latter term is used on the left-hand side of equation (6) after 

separation of variables. Following the same procedure as above, and 

defining β = h / l yields: 
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Where M is a multiplicative factor, which is a function of λβ and η: 
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It can be seen that for “small” values of β that the left-hand side of 

equation (18) reduces to that of equation (16). 

A few comments should be made about the multiplicative factor M. 

First, looking at the square root in the denominator, it is seen that λβ can 

never exceed 2. Looking at the numerator, it is seen that if λβ exceeds 

2  that negative contributions will be made to the integral. Physically, 

this implies that the shape of the structure will “double back” in the x 

coordinate. 

Discussion of the results 

In order to clarify the meaning of the relations expressed by equation 

(18), calculations were carried out to allow presentation of particular 

quantities versus λβ. Equation (18) was solved using Simpson’s Rule ) 

plots are not presented due to the size of the text). Noteworthy is that M 

is essentially 1 for η = 1. Also, for λβ = 0 that λ = π as expected. The 

value of λ then decreases as the non-linearity increases. It should be 

noted that somewhere between λβ = 1.8 and 1.9 that λ will go to 0. The 

physical meaning of this, and the effect on β are not known at this stage 

of research. 

In the next step, the dependence of the deformed curve from λβ was 

determined 

2 2( ) ( )ds dx dy L= + =  (20) 

2 2 1
( ) ( )d d d   


= + =  (21) 

where γ = l / L and dσ = ds / l. 

It can be shown that for small values of λβ that: 

2

1
2




 
 −  

 
(22) 

The integration of equation (18) is now used to generate η vs. ξ plots for 

selected values of λβ. In order to increase the physical meaning of these 

plots they are converted back to y and x, respectively, each non-

dimensionalized by L, by multiplying η by γβ and ξ by γ. These plots are 

displayed in Figure 3. It is important to note that the full shape of each 

curve includes a symmetrical segment about the right end of the curve 

as shown. It should also be noted that for λβ approaching 0 the shape is 

a half sine wave (including the reflected portion of the curve) with 

infinitesimal height. 

Fig. 3 Shape curves for different values of λβ 

Then, calculations were made to determinethe tension T required to 

form the shapes noted. As discussed previously, the tension can be 

determined by taking the derivative of the strain energy with respect to 

T. It can be shown that it is related to the shortening of the distance 

between the two supports by: 

2T
L y ds

EI
− =   (23) 
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Note that the integral is taken over the length of the structure, not just 

the x coordinate, to account for the large deformation. Non-

dimensionalizing and re-arranging yields: 

2

1 1
1

2 ( )


  

 
= − 

 
(24) 

Here, τ represents non-dimensionalized tension defined as TL2 / EI, and 

μ represents non-dimensional strain energy: 

0.5

2

0

d  =  (25) 

Of interest is the limit of τ as the non-linearity gets small. It should be 

noted that: 

0.5

2

0

sin 0.25d  = = (26) 

Furthermore, if one substitutes the approximation of equation (22), the 

zero β terms cancel and: 

2 2

28 2

 



= = (27) 

This appears consistent with the rest of Figure 4. It should be noted that 

this is half of the classical Euler load for the structure. Figure 4 presents 

plots of μ and τ, respectively, vs. λβ.  

3.1.2 Formulation based on the classic problem of the elastica 

In the second approach the classical problem of the elastica has been 

applied to describe the structural characteristics of inflatable cushion 

structures, including a proposed method to determine the bending 

stiffness of these structures.  Approximate solutions employing a 

combination of the elastica formulation and the principle of minimum 

potential energy have been obtained to provide simple expressions for 

engineers to use to determine the key parameters of the shape in terms 

of the end rotation. 

Fig. 4 Non-dimensional strain energy μ and non-dimesionalized tension 

τ as a function of the λβ 

Figure 1 displays the inflatable cushion structure in a series of deformed 

conditions. The figure also displays the key geometric parameters and, 

for one of the deformed conditions, a free body diagram. Following 

Ref. 6, the free body diagram indicates that at a coordinate x along the 

horizontal analysis, or, preferably, a coordinate s along the (assumed 

fixed) length of the structure, the equilibrium equation is given by 

Eq. (1). The equivalency to the elastica problem is now demonstrated. 

The following relationships will be used in the derivation: 

sin
dy

ds
=  (28a) 

cos
dx

ds
=  (28b) 

M EI=  (28c) 

d

ds


 = (28d) 

Taking a derivative of Eq. (1) with respect to s, multiplying the equation 

by the curvature κ and substituting several of the relations of Eq. (28) 

yields: 

2

2
sin 0

d d d
EI T

ds ds ds

  
+ = (29) 

This expression is equivalent to: 

2
1

cos 0
2

d d
EI T

ds ds




  
− =  

   

(30) 

The expression in the brackets of Eq. (30) is thus constant along the arc 

length of the structure. Essentially, this is the elastica problem of Love 

(Ref. 11). 

The value of the constant is determined from the boundary conditions. If 

the value of θ when s = 0 is specified as θ0, and noting that the 

curvature is zero at that point, yields: 

2

0

1
(cos cos )

2

d
EI T

ds


 

 
= − 

 
 (31) 

The solution for θ(s) is found in Love (Ref. 11) using a change in 

variable and “elliptical functions of the second kind”. These functions 

are not familiar to most engineers. Accordingly, a numerical solution to 

Eq. (31) will be employed. Later in this paper, approximate analytical 

methods will be used to lend analytical meaning to the results, 

particularly when θ0 is small. 

Separating variables in Eq. (31) yields the following intrinsic solution 

for θ(s): 

0 02(cos cos ) E

d T
s

L P





 

 
=

−
 (32) 

Here, PE is the classical Euler buckling load the structure. 

The numerical procedure is as follows: for a given value of θ0, the 

integral on the left side of Eq. (32) is evaluated for different values of θ 

from θ0 to 0, generating θ(s) in tabular form. At θ = 0, s = L / 2. This 

then solves for T / PE as a function of θ0. 

The integrand on the left hand side of Eq. (32) is singular at the 

beginning of the integration range. In order to start the integral process 

(generally done with Simpson’s rule), a small step of size ε0 is chosen. 

Let ε be a value of θ between θ0 and θ0 – ε0; then, the integrand is 

approximately: 

0 02(cos cos ) 2 sin

d d 

   
=

−
(33) 

Integrating from 0 to ε0, and noting that for the computations used ε0 = 2 

x 10-6 θ0, the initial step is thus 0.002 0 0sin  . 

In order to plot the deformed shape of the structure, the x and y 

coordinates are found parametrically as functions of s by integrating 

Eqs. (28a) and (28b) respectively. The deformed span  is found by 

integrating Eq. (28a) from 0 to L, while the maximum height h is found 

by integrating Eq. (28b) from 0 to L / 2. 

Figure 5 displays the various shapes of the structure for different values 

of θ0. Note that half the shape is shown. The rest of the shape is 

symmetric about the end opposite the end at the origin. 
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Fig. 5 Derived shapes for the structure as a function of θ0

Note that for values of θ0 greater than about 2.3 radians the structure 

deforms into a loop. While mathematically interesting, it is not 

physically possible with the inflatable cushion system. 

The blue curve of Figure 6 displays the maximum height of the structure 

as a function of θ0. Note that the tallest structure occurs when θ0 is 

about 2.0 radians, where h / L is slightly more than 0.4. 

Fig. 6 Maximum height of the structure as a function of θ0 

The blue curve of Figure 7 displays the tension in the attached cable 

required to hold the structure in a particular deformed shape as a 

function of θ0.  

Note that as θ0 goes to 0 that the problem reduces to the classical Euler 

buckling problem. Approximating the cosines by the first two terms of 

their Taylor series yields in the left-hand side of Eq. (6) yields: 

0 0 0

00 0

1

2 2
00 0

cos
22(cos cos )

d d

  

   

   

−= = =
− −

  (34) 

Setting this to the right hand side of Eq. (32) with s = L / 2 yields T = 

PE. 

Fig. 7 Required tension as a function of θ0 

Comparison with experiment 

In Refs 2-4, the author did experimental research with inflatable cushion 

structures similar to those described herein. In one case, the pull cable 

was loaded so that the horizontal expanse of the structure was 50% of 

the structure length. Referring to Eq. (28a) and remarks above, this 

situation would occur when θ0 is about 1.5 radians, or slightly less than 

90°. In fact, this is nearly the case. Proceeding with this result yields 

that the maximum height, as determined from Figure 6, is about 3 / 8 of 

the length of the structure. This, too, is not significantly different from 

the experimental result. Finally, the required tension to hold this shape 

is determined from Figure 7 and is seen to be about 1.35 PE. Thus the 

bending stiffness is experimentally determined to be: 

2
2

2
0.075

1.35

TL
EI TL


= = (35) 

Approximate analytical solutions 

In order to lend greater physical meaning to the results, approximate 

analytical solutions are sought for the quantities plotted in Figures 6 and 

7. These approximations will be for small values of θ0. Using Eq. (34) 

but with variable upper limit as a guide: 

0( ) cos
s

s
L


  (36) 

In order to find the horizontal expanse of the deformed structure, Eq. 

(28b) is integrated over the range of s; thus: 

2

0 0

1
cos 1

2

L L

ds ds 
 

=  − 
 

   (37) 

Substituting Eq. (36) into Eq. (37) yields: 

2

01
4L


= − (38) 

Note that in this approximate expression there is excellent agreement 

with the “exact” solution for θ0 < 1 radian. 

In order to find the maximum height of the deformed structure, 

Eq. (28a) is integrated over the half-range of s; thus: 

3
/2 /2

0 0
sin

6

L L

h ds ds


 
 

=  − 
 

   (39) 

Substituting Eq. (36) into Eq. (39) yields: 

3

0
0

1

9
h

L






 
= − 

 
 (40) 

The approximate expression is plotted in magenta in Figure 6. Note that 

here as well there is excellent agreement with the “exact” solution for θ0 

< 1 radian. 

In order to find an approximate expression for the required tension for a 

particular shape, some manipulation must be carried out on the 

equilibrium equation in order to derive a criteria for determining T. 

Multiplying Eq. (1) by the variation of the curvature, integrating over 

the range of s, and substituting Eqs. (28c) and (28d) yields: 

0
0

L d
EI Ty ds

ds


 

  
+ =  

  
 (41) 

Integrating the second term in the integrand by parts and substituting 

Eq. (28a) yields: 

  0
0

sin 0
L

LEI T ds Ty  − + = (42) 

The last term is zero because y = 0 at either end of the structure. Note 

that Eq. (42) can be manipulated to yield: 
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2

0

1
(1 cos ) 0

2

L

EI T ds  
  

− − =  
  

 (43) 

The first term, when integrated, is the strain energy U. The second term 

can also be integrated to yield: 

( )( ) 0U T L − − = (44) 

Eq. (44) is recognized as the principle of minimum potential energy for 

the inflated cushion structure. Employing Eq. (44) (or its form in Eq. 

(43)) and using Eq. (36) to approximate θ will yield an approximate 

expression for the tension T. 

The potential energy, denoted by Π, can first be approximated as: 

2 2 4

0

1

2 2 24

L d
EI T ds

ds

     
  − −   

    
  (45) 

Substituting Eq. (36) and integrating yields: 

4
2 2 0
0 0

4 16
E

L
P T


 

  
 = − −  

  
(46) 

Taking a derivative of Π with respect to θ0 and setting to zero yields: 

2

0

1

1
8

E

T

P 
=

−

(47) 

This approximate expression is plotted in Figure 7 in green. This 

expression is in excellent agreement with the “exact” solution for θ0 < 1 

radian. Eq. (47) can be further approximated as: 

2

01
8E

T

P


= + (48) 

This expression is plotted in  Figure 7 in magenta and also is fairly 

accurate for θ0 < 1 radian. Finally, the average of the expressions in Eqs. 

(47) and (48) are plotted in  Figure 7 in cyan. Note that this expression 

is in agreement with the “exact” solution for θ0 < 2.2 radians. This limit 

is well within any practical applications for inflatable cushion 

structures. 

3.2 Shell under applied transverse loading 

3.2.1 Extension of the elastica problem to the problem of inflated 

cushions under transverse loading. 

To formulate a computational model of a modular inflatable cushion 

structure under applied transverse loading, the free body diagram shown 

in Figure 2 has been modified in accordance with Figure 8. The 

structure is under a general vertical load distribution w, which is 

assumed known and can be expressed as function of s, the coordinate 

along the (assumed fixed) length of the structure. 

Fig. 8 Computational model 

In Ref. 7, the potential energy expression for the elastica problem (that 

is, the problem herein with w = 0 over the entire length of the structure) 

was derived.  This expression is: 

( )U T L = − −  (49) 

Here, U is the strain energy.  The second term subtracted is the work 

done by the tension in the draw rope.   

The expression is extended for two effects.  The first is the work done 

by the applied load w through the vertical deflection y. This term 

introduces a second displacement variable y in addition to the variable θ 

used in Ref. 7 and 11.  Accordingly, a Lagrange multiplier, which is 

also a function of s, is introduced, multiplying the geometric 

relationship between y and θ.  The resulting expression for the potential 

energy is thus: 

2

0

1
(1 cos ) sin
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EI T wy V ds
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
 

    
 = − − + + −    

     
  (50) 

Here, EI is the bending stiffness, the horizontal span change is 

expressed as an integral and the Lagrange multiplier is designated as V.  

The choice of this symbol for the Lagrange multiplier will become 

apparent as the formulation progresses. 

Minimizing the potential energy using calculus of variations yields the 

following three equations for the three variables θ, y and V: 
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(51) 

The first of these equations is the moment equilibrium equation; the 

second is the force equilibrium equation in the vertical direction; the 

third is the geometric relationship between y and θ.  Note that V is thus 

identified as the upward vertical force transmitted through the structure. 

To make a comparison with the elastica problem the moment 

equilibrium equation is multiplied by the curvature, that is, the first 

derivative of θ with respect to s.  Initially, this yields: 

2
1

cos cos 0
2

d d d
EI T V

ds ds ds

 
 

  
− + =  

   

 (52) 

The first term, of course, comprises the elastica problem.  It should be 

noted that: 

( )sin cos sin
d d

V V w
ds ds


  = +  (53) 

where use has been made of the force equilibrium equation. 

Substituting Eq. (53) into Eq. (52) yields: 
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cos sin sin
2

d d
EI T V w

ds ds


  

  
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   

 (54) 

Eq. (54), combined with the force equilibrium equation, comprise the 

extension of the elastica problem to the problem of inflated cushions 

under transverse loading. 

3.2.2 Case study 1: a downward point force applied at mid-span 

Examining Eq. (54) reveals that the methodology of Gellin and 

Tarczewski (Ref. 7) would have to be modified when w is non-zero. In 

order to use that methodology, a case must be selected that is non-

trivial, both analytically and practically, but generally has w = 0. The 

case of the downward point force of magnitude F applied at mid-span is 

such a case. Note that by symmetry only half the structure need be 

analyzed; furthermore, the value of V in one half of the structure is –F/2, 

a constant. Figure 9 displays the problem with a free body diagram for 

the portion of the structure to the right of a cut at a coordinate s within 

the right half of the structure. 



44 LIGHTWEIGHT STRUCTURES IN CIVIL ENGINEERING - CONTEMPORARY PROBLEMS - XXIV LSCE 2018 

As a result, Eq. (54) simplifies to: 

2
1

cos sin 0
2 2

d d F
EI T

ds ds


 

  
− − =  

   

 (55) 

Fig. 9 Free body diagram for the case study 

Except for the inclusion of the third term within the brackets, Eq. (55) is 

in the same form as the elastica problem. 

The bracketed term has a constant value over one-half of the structure. 

If the value of θ at the support at s = 0 is assigned the symbol θ0, then: 
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0 0
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2 2

d F
EI T
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
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Manipulating Eq. (56) as done in Gellin and Tarczewski [5] yields: 
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The parameter β is defined as F / 2T; the parameter PE is the Euler 

buckling load of the structure. The parameter β is a convenient 

parameter to generate results.  It is related to the applied load, but not 

linearly, as it is anticipated that T will be varying as well with increasing 

load. 

The methodology for Eq. (57) will be the same as that used in Gellin 

and Tarczewski (Ref. 7):  For given values of θ0 and β the integral is 

evaluated for all angles from θ = θ0 to θ = 0.  At this last point s = L / 2; 

thus, the value of T / PE is determined.  The integral is then scaled back 

to determine a θ vs. s table, from which x and y coordinates can be 

generated. 

There are some additional conditions of which one should be aware.  

There is a limitation on β so that the term under the square root sign 

does not go negative.  This will first occur at θ = 0, and has a value of: 

0
max

0

1 cos

sin






−
= (58) 

The method itself has inherent assumptions built in; in particular, there 

is an assumption that θ does not become negative prior to s = L / 2.  If 

this did occur, a point of inflection in the shape of the structure would 

be present. When the curvature reverses, the direction of the moment 

would reverse. Thus, it is necessary to check the sign of the moment, 

given by: 

2

F
M Ty x= − (59) 

where here the moment is considered positive when reacting the tension 

in the draw rope and thus negative of that shown in Figure 9. (It should 

be noted that Eq. (55) could be derived from Eq. (59) with the moment 

defined as in Figure 9.) While it is recognized that such shapes could 

exist in an equilibrium state, the physical condition of potential ponding 

when deployed outdoors makes them undesirable. 

Finally, the analysis must reflect the physical deployment of the 

structure.  It is imagined that the draw rope will be pulled until the 

horizontal span of the structure reaches a desired length.  The rope 

would then be clamped into place, fixing this span.  As the load is 

applied, the shape will tend to flatten and bulge, so that it is anticipated 

that θ0 would likely increase.  This, in turn, will increase βmax, which 

will allow larger values of β to be admissible.  In the interest of brevity, 

two cases are considered:  ℓ / L = 0.50 and 0.75.  A range of values of β 

beginning with zero will be studied until one of the conditions of the 

analysis is violated. 

The results are presented in the following figures.  Figure 10 indicates 

how the values of β and βmax converge before a contradiction in the 

methodology occurs. 

Fig. 10 Variation of βmax with β 

Figures 11(a) and 11(b) display the derived shapes of the structure as 

the load increases, up to the limiting value of β given in Figure 10. As is 

seen in the figures, the shapes bulge as the load increases. 

Fig. 11(a) Half shape for ℓ / L = 0.50 

Fig. 11(b) Half-shape for ℓ / L = 0.75 
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Figure 12 displays how the tension in the draw-rope increases with 

increasing load.  It is seen that the tension increases more rapidly if the 

initial span is longer and flatter. 

Figure 13 displays the variation in the bending moment with increasing 

load.  Of interest are the maximum moment and the moment at the mid-

span.  When β = 0 (the elastica), the maximum bending moment exists 

at the mid-span.  As the load increases, the maximum moment moves 

toward the interior of the half-span; the moment at the mid-span steadily 

decreases until it goes negative, indicating that the methodology is no 

longer valid.  It is interesting to note that the maximum moment actually 

decreases initially with increasing load before increasing with increasing 

applied load. 

Fig. 12 Variation of the draw-rope tension with increasing load 

Fig. 13 Moment variation with increasing load 

Figure 14 displays the applied force as a function of β.  It is a true 

measure of the strength of the inflated cushion structure. Note that the 

shorter horizontal span case has the potential to carry more load.  

Fig. 14 Applied load as a function of β 

3.2.3 Case study 2: a downward point force applied at mid-span 

with inflection points 

In this chapter, the authors successfully use an alternate method of 

solution which allows for inflection points to be included in the derived 

shapes.  This allows for study of these structures under increased load. 

Results for those cases examined above in chapter 3.2.2 using the 

current methodology are in agreement with the results derived below. 

The equation of moment equilibrium was derived above in chapter 

3.2.2, Eq. (55). This equation was subsequently manipulated to obtain 

Eq. (57). There, PE is the Euler buckling load of the structure and θ0 is 

the angle of rotation of the structure at the support.  The method of 

solution uses the parameter β  = F / 2T as the basic parameter for study 

with a particular span ℓ / L.  A value of θ0 is then chosen.  The integral 

in Eq. (57) is then calculated for all values from θ0 to 0.  The value of s 

when θ = 0 is L / 2.  Thus, the ratio T / PE is calculated as well as all the 

other parameters of the problem.  Most importantly, a value of ℓ / L is 

calculated.  If it is not the particular span under study then the value of 

θ0 is changed and the process is repeated until convergence. 

The method works well for cases where the ratio F / 2T is below a 

certain threshold determined by a non-negative bending moment at mid-

span.  Only one parameter, θ0, is varied in order to obtain a complete 

solution.  However, the algorithm has short-comings.  First, the form of 

Eq. (57) is such that one is actually calculating s as a function of θ 

rather than the other way around.  This implies that θ should be single 

valued and, given the boundary condition, non-negative.  It appears that 

this is geometrically restrictive on the geometry of the deformed 

structure, as well as the fact that there appears to be no physical reason 

for this restriction to occur.  Secondly, the presence of the square root 

implies an additional restriction between the parameter F / 2T and θ0.  

Finally, it is anticipated that T increases with increasing F, and thus it is 

unknown if a limit on the ratio F / 2T may exist.  The parameter itself 

appears to be arbitrarily chosen, but it does allow for an independent 

assessment of value of T / PE. 

Accordingly, a modification of the method of solution was developed.  

It is based on Eq. (55).  Defining the non-dimensional variable ξ as s / 

L, Equation (55) transforms to: 
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The boundary conditions are: 
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Equation (60) is solved by a central difference method. The advantages 

of this method are that θ is found as a function of ξ, which is a naturally 

single-valued variable.  Thus, θ can decrease and increase as needed.  

The parameter for study is F / PE, which is a natural parameter to 

represent the applied load. The disadvantages are that the central 

difference method is usually employed with initial value problems.  In 

this case, a particular value of θ0 is assumed.  Furthermore, unlike the 

method of [6], a value of T / PE is also assumed.  These values are 

changed at each iteration until the span value ℓ / L and the second 

boundary condition of Eq. (61) are satisfied.  It was found that as F / PE 

increases, the ability to converge to a satisfactory condition became 

more difficult. The results below perhaps offer a clue as to possible 

reasons. 

Results 

As in chapter 3.2.2, two main case studies are considered, ℓ / L = 0.50 

and ℓ / L = 0.75.  The derived shapes are displayed in Figure 15, below. 

 For the first case, inflection points in the half-shape are clearly present 

as F / PE increases, beginning with a value of 8 for that parameter.  

Similarly, for the second case, inflection points begin when this force 

parameter is about 5.  This corresponds to the results of chapter 3.2.2, 

where the maximum values of the F / PE parameter for shapes without 

inflection points were about 7 and 4.5 respectively for the two spans 

studied. 
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Fig. 15(a) Half shape for ℓ / L = 0.50 

Fig. 15(b) Half-shape for ℓ / L = 0.75 

Figure 16 displays the tension in the pull rope as a function of the 

applied load.  Note the increasing rate of increase of this parameter as 

the load on the structure increases.  For both span cases the curves are 

becoming vertical at the maximum loads studied. 

Fig. 16 Tension in the draw rope 

Figure 17 displays the bending moment at mid-span (MC) and the 

maximum bending moment in the half-span (Mmax) of the inflated 

cushion structure.  A negative mid-span bending moment is indicative 

of the presence of inflection points in the interior of the half-span shape. 

Fig. 17 Bending moments 

Figure 18 displays the mid-span stiffness of the structure normalized by 

the mid-span bending stiffness of a simply supported beam, k0 = 48 EI / 

L3.  It is seen that the inflated cushion structure, modeled as an active 

bending member, is significantly stiffer than a straight flat beam.  This 

agrees qualitatively with the results of  Ref. 12.  Note that as the 

magnitude of the applied force increases that the stiffness decreases.  

Fig. 18 Mid-span stiffness 

To explain the difficulty in achieving convergence with loads larger 

than those shown, one returns to Figures 16 and 18.  It appears that the 

tension in the rope to maintain the deployed structure at a particular 

span length is increasing very rapidly.  This may lead to failure of the 

rope or compressive failure of the structure; furthermore, the rapidly 

decreasing stiffness will result in the mid-span hitting the ground or 

falling below the level of the supports, or some sort of “snap-through” 

buckling phenomenon resulting in a loss of load carrying capacity. To 

illustrate the course of the process, comparison of shapes of the inflated 

cushion structure after uplift to ℓ / L = 0.50, for different values of F / 

PE, are shown in Figure 19. Regardless, the study shows some practical 

limitations for the effectiveness of these structures. 

4. CONCLUDING REMARKS 

A methodology for studying the behavior of inflated cushion structures 

modeled as an active bending member has been derived. Shapes 

including inflection points have been derived and appear to be stable. It 
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appears a limitation on the point load is possible based on rapidly 

increasing tension in the draw rope and decreasing stiffness of the 

structure with increasing load. Future work will attempt to use this 

methodology to study more complex load cases, such as weight and, to a 

lesser extent, snow loads. 

In parallel with the work on analytical solutions, work is underway on a 

computational model of the structure being studied using FEM. The 

model being developed will take into account the details of the 

construction of the real structure, in particular the possibility of the 

cable sliding relative to cross-braces in the nodes of the lower chord. 

Fig. 19 Comparison of shapes of the inflated cushion structure after 

uplift to ℓ / L = 0.50, for different values of F / PE 
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